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COMPUTATION OF THE TWO-DIMENSIONAL FLOW IN A LAMINAR BOUNDARY
LAYER

By Huea L. DrRYDEN

SUMMARY

A comparison is made of the boundary-layer flow com-
puted by the approximate method developed by K. Pohl-
hausen with the exact solutions which have been published
for several special cases. A modification of Pohlhausen’s
method has been developed which extends the range of
application at the expense of some decrease in the accuracy
of the approximation.

The work was carried out af the National Bureau of
Standards, in part withthe cooperationand financial assist-
ance of the National Adyisory Committee for Aeronautics.

INTRODUCTION

The concept of the boundary layer introduced in
modern aerodynamics’ by Prandtl has been extra-
ordinarily fruitful in the interpretation of experimental
data. As yet, it i3 not possible to make the interpreta~
tions quantitative, except in a few instances, since the
equations describing the flow are nonlinear, and their
mathematical solution is extraordinarily difficult, if not
altogether impractical in many cases of interest.
Pohlhausen (reference 1) developed an approximate
method of solution of the equations for 2-dimensional
laminar flow which has been criticised by von Mises
(reference 2). Since Pohlhausen’s method and related
methods are within the mathematical skill of most
experimenters, it seemed worth while to study the
possibilities and limitations of such methods as judged
by the instances for which exact solutions are known.

POHLHAUSEN’S SOLUTION

The equations for the steady laminar flow of an in-
compressible fluid in the boundary layer along a
2-dimensional surface whose radius of curvature is
large as compared with the thickness of the layer are
a8 follows:*
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where % is the tangential component of the velocity,
v the normal component, z the distance measured along
the surface, ¥ the distance measured normal to the
surface, » the kinematic viscosity of the fluid, p the
density of the fluid, and p the pressure. At the surface,
4 and » are zero. As ¥ increases, u approaches U, the
speed in the potential flow outside the boundary layer,
asymptotically. U is a function of z in general. From
equation (2) the pressure within the boundary layer is
independent of y and equal to that in the potential
flow. Since in the potential flow p+ }¥pU? 18 constant,
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U’ denoting %I

From equations (1) to (4), an important integral
equation may be derived (reference 1), namely, the
Karmén integral relation

—2U’L“(U—u)dy—U%L“(U—u)dy

+d%fo (U—uy*dy= —:v(%)y=0 ®)
In Pohlhausen’s approximate method of solution, a
suitable assumption is made as to the shape of the
velocity-distribution curve, leaving undetermined a
parameter § which may be regarded as the ‘‘thickness”
of the boundary layer. & is then determined as a
function of z from the relation (5), following which the
velocity distribution itself may be computed. The
procedure is reviewed here, omitting the algebraic
manipulations which are straightforward, though
tedious.
Pohlhausen assumes

y=ay+ b+ e+ dy! ©6)
To determine the 4 coefficients, 4 conditions are neces-
sary. It is first required that the distribution within
the boundary layer be continuous both as to magnitude

1 A full discussion of the approximations made in deriving the boundary-layer
equations is glven by K. Hiemenz in Dinglers Polytechnische Journsl, vol. 328,
911, p. 321.
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and slope with the potential flow at y =35, where 5 is &
function of z, at present undetermined. This gives the

2 conditions:
Q!
ou_ 0aty=é

| 5 ®

The distribution is then made to satisf{y the differen-

tial equation (1) at the two boundaries. This
requires *

u=U at y=3

*u 10 UU’
-a—y§=;gx2'= aty=0 ©))
and
%=0 aty=2s 10)

From the 4 conditions 7, 8, 9, 10, the 4 coefficients
a,b, ¢, din (6), m&y be determined. It is found that
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d =<1 —§>—q; that is, equation (6) is of the form
T @0+ aX) L Bo+5:0) Lt coted) ¥
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§ and ay, a,, etc., are numbers having the

values ay=2, a;=%, by=0, by=—%, co=—2, a1=}%,
do=1,d,=—1%. The parameter A gives the mﬂuence of
the potential flow on the shape of the curve relating the
nondimensional quantities /U and y/s. If A is con-
stant (or zero), the distribution curves are homologous
for all values of z, i.e., the curve of u/U vs. ¥/ is inde-
pendent of z; & is, however, a function of =z If
@o+a; \ is negative, 4/U is negative for small values of
/8, indicating a reverse flow near the surface. The

where A=
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criterion for the beginning of reverse flow (separation)
is that )
Us __a

4 a

k:n

(12)

The value of 5 is determined from (5), & procedure
which amounts to satisfying the differential equation
on the average and at the boundaries (by 9 and 10) but
not at every point. 'With the approximation (11) for the
distribution within the layer, the upper limits of the
integrals in (5) may be taken as & instead of o ; since
at values of y/6>>1, « is assumed equal to U and U-u
vanishes.

From (11) it may be shown that

3
ﬁ (T—u) dy=Us (S+ TN (13)
where S and T are numbers computed from a,, a;, ete.

Noting that both & and A are functions of z and that

U’B’ dy_ 20’5 ds U”tS2 2xds, UM
y 'dz v dz ¥ 5 dz e U (14)

=7 da&*U

Where 0"’ denotes =
d (3 ds
ZEL (U—u) dy=(S+3TN U

+ 780 ot vra(s+ 1y (15)
Likewise ﬁ N U—w)tdy=T% (K+IN+MN)  (16)

where K, L,and M are numbers computed from ay, a4, etc.,
8
4 f (U—uy dy=1 S8 (K+ 3IN+500N)

F2UUs (K+IN+MN) + U’s U” Z+oMN)  (17)

2
Substitution in (5) gives, writing =2

Uu”\ v, uury ..,
ds —%—(2K—3S+a,)U’z—[2L—3T+(L—T)WJU’z' 2M(1+ U,,)U’z’ s
Tde E—8S13 @D z+5MUF )

The values of S, T, K, L, and M are given by

373 2 503
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? Note that at y=0, w=r=0; at y=3, y= U,g—:-'— U’,%",—‘—D.

blco 2b0dl+2bld0+codl+cld0 11

t5 7 7 4 T4 T 71512
_a’ b? d® @l_ 2mey al_dl b1_01
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The complete solution of Pohlhausen is given then by

b @5 (DY oo

752
)\==-U’z===-U‘S

where

2 and hence & are to be determined from
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d 0.8 [—9072+ 1670.4%—(47.4+4 8
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Lo e-(1+55) ¥]

Ul—213.124+5.76 x4 2]

Equation (20) is of the form
dz P (z, z)

&0 @, 2)
and cannot in general be directly integrated. In any

particular case, a graphical solution can be made by
the isocline method (reference 3) as illustrated later.

2y

MODIFIED POHLHAUSEN METHOD

In the application of Pohlhausen’s method to certain
types of problems, difficulty arises because Q(z, z)
vanishes and dz/dz becomes infinite. In at least one
case in the literature, this behavior has been taken as
an indication of early separation of the flow (reference
4), but investigation shows that the singularity is
introduced as a consequence of the nature of the
assumed velocity distribution and represents a failure
of the method. An attempt was therefore made to
remove this limitation on the range of application of
Pohlhausen’s method. The attempt was not com-
pletely successful; but, without serious additional
complication, the range has been greatly extended, at
the expense of some decrease in the accuracy of the
approximation.

The modification introduced was the addition of
" apother term in the expression (11) for the velocity
distribution, determining the additional constants to
avoid the infinite value of dz/dz, if possible.
velocity distribution was assumed to be

2= (ot a) Y + Got o) G + (ot e Dt ot
+ (oo + el)\)g—: ©22)

Leaving @y and a, undetermined and applying the
conditions 7, 8, 9, and 10, we find

by =0, b,——];,co 10— 6a0,cl=— 6a;, dy= — 154 8a,,

3 1
d;= —§+8a1, € =6—23ay, &= —3a,.

Likewise:

0 8[ 590561.9+13783.3x— (53 93 —14. 6947

Thus the-

(20)

1 o
2 10

1 aq
T=130"70
K= (2715—933a,+ 104a,?)/6930
L= (281 —69a,— 3732a, + 832a,a,)/27720
M= (416a.2—69a, +3)/27720

The solution for A=0 (U’=0) is known, namely,
that given by Blasius (reference 5). The value of a,
was taken as 1.89 to give a good approximation to
that solution.

With this value of ay:

Q(x, z)=3328.4064—\(1837.44a, —241.23) —22(2080a,?
—345a;+15) (23)

To prevent dz/dxz from becoming infinite, Q(z, z)
must not vanish. Since in the physical problem A
must be a real number, it would be desirable to have
the roots of Q(z, ) =0 imaginary. It proves to be im-
possible to make the roots of Q(z,z) =0 imaginary by
any choice of a;. Calling the roots A; and ), where

A > and calling the value for separation )\,<= —Z/—:’);

S=

The

maximum ratio is found for a,=0.11, \,=—17.18,
A= —30.89, \;=48.52. The values for Pohlhausen’s
solution (21) are A\,=—12, ;;=—17.76, \;=12. The
range of application is thus extended by the modified
method. The improvement in range is not accurately
indicated by these figures since the values of 5 and
hence of N are not strictly comparable;* but the im-
provement is sufficient to deal with problems that
cannot be handled by (21).
The modified solution is then

a; was selected to ma.ke =2 as large as possible.?

o= 89+0.10Y - ( ) 2+ (= 134+084>»)£

4 (0.12—0. ezx)f{: +(0.33+0. m)ya (24)

722
where A=U'z2= U’s

mined from

2 and hence 5 are to be deter-

()]

U[—1500.63 —17. 6337)\+)\’]

3 Tho modified method was developed in connection with the study of a flow in
which separation was expected and In which Pohlhausen’s solution fafled by dz/dx
becoming infinite, Hence this chofce of a;. The maximum ratio and the corres-
ponding value of a1 were found by trial, Le., by substituting various values of a; In

Q(z, «)=0and computing ;‘-",

(25)

4 A more reliable index of the improvement is given by a consideration of the so-

called “Verdriingungsdicke”’, 3*, defined by 6*—f0 (1 ) dy and the corres-
ponding A\*= UJ‘ « For Pohlhausen’s solution, &* = 3(0.300—0.0033%\), whence
A*=2(0.300-0. 00833)\)’. For the modified- solution &*= 3(0.311—0.002677), whence
A*=2(0.311—-0.002670)8. It is readily shown that for Pohlhausen’s solution, A.* =
—1.92, \*=—3.56, \9*=0.48; for the modified solution, )\,*=—2.19, \*=—4.78,
Ar*=1.80.
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APPLICATION TO FLOW IN WHICH U=k~

POHLHAUSEN’S APPROXIMATION

A problem for which exact solutions have been given
by Falkner and Skan (reference 6) is that in which
U=kz™ where k and m are numerical constants. For
this case U’ =mU/z, U” =m(m—1) U/?, and UU"|U"*
=(m—1)/m, a constant. Equation (20) becomes, on

L4
setting z=\/U", %—z=% %—%,— ) and collecting terms

5 A M) A—N) )

T3m+1° &xT N+5760—213.12 (26)
where A;, g, and ); are the three roots of
A3(0.6m+0.2) +A2(36m +1.92) + A (—213.12
—1123. 20m) +7257.6m=0 27

The variables A and x are separated, and equation (26)
may be readily integrated to give *

5 -
A=A (A=) A—Ag)* = A"

where 4 is the constant of integration, and @, b, and ¢
are given by the relations

=)\12 +5.76M —213. 12

O\x—)\z) O\l_)\a)
bn)\g’+5.76)\2—213.12

()\2—)\3) O‘a_)\l)
oM 5760, —213.12

As—A) (a—N)

The constant of integration A must be determined
by the boundary condition which fixes the value of A
at some known value of z. Thus if A=), at z=1,

A=Ac—N)® Qe—A2)?(A\.—23)¢ and the general solution

is
A=) A=) A—N)°
(}‘c_)‘l)a Qc_M)b Q\c_)\a)"
The behavior of the general solution can be traced
by somewhat tedious numerical calculations for definite
numerical values of A, and m. If A, is selected equal
to N\, A, OT N, it is obvious that the general solution
degenerates to the particular solution A=2X;, A=), or
A=), in which X\ is constant and independent of z.
These are the so-called homologous solutions studied
. U’ mUs* .
by Falkner and Skan. Since A= = for this
A vz
mU
homologous, the solution for any value of m being

. U Um . l .
given by a curve of 7 vs. y /E or, since - is constant

_5_

ma y3m-+1

case, §= The velocity distribution curves are

for any m, of %-vs. y\/g- It is convenient to write

%EN, in which case equation (27) becomes

3 Assuming m><—}4, In which case there are only 2 roots of (27).
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N3(0.6m3+ 0.2m?) + N*(1.92m +36m?) + N(—213.12
—1123.20m) +7257.6 =0 (28)

Since (28) is a cubic in N, there are in general 3
values of NV and hence 3 solutions for each value of m.
The results can best be visualized from a graph of N
vs. m. This graph is shown approximately in figure 1.
The computed values are given in table I.

TABLE 1.—ROOTS OF EQUATION (28)

m N N3 mM M A N
2.00 4.148 8.088 | —38.64 8.208 | 18.176 | —77.
1.50 5. 206 1L200 | —50.30 7.808 | 16.800 | ~—75.46
100 7.052 17.88 | —72.28 7.052 1 17.808 | —72.28
0.50 11. 210 39.70 | —130.60 5.605 ) 10.850| —05.26
0 34.054 infinite | infinite 0 28,13 -37.73
—0.02 37.980 —1,461.45 | 1,742.70{ —0.768 | 29.220 | —34.
—0.09 75.28 —388. 57 210.84 | —6.7756| 34.701| ~—18.08
—0. 0020 80. 63 —378.1 10L16 | —7.485| 38.13 —17.76
S| e | s | n) o je |
L= . g. .
-0.33 imag. imag. | Infini imag. | Imag. {nfinite
—0.50 {mag. {mag. 362.3 {mag {mag. | —181.15
—1.00 Imag. imag. 107.9 imag. | f{mag. | —107.856

\=mNi, Ma=mNa, a=mNL

It may be noted that % does not appear in the solu-
tion. % may be either positive or negative; equation
(28) is the same in either case. If k is negative, U is
negative, i.e., directed in the opposite direction to x
and the negative values of N must be selected, since 2

<00 T
A=-38,
A=l 1 Ta-2s
300
|
200
/ AR
100 A=84 A=—12 \
L/ A’\
-~
A-0R AN |A2_,
v o An/2_,
L—7wo roots imaginary—> P A=-|84
i /c
-200 /
[
-300 |
B
A=co A=28
400 | l"l |
-3 -2 -/ 7] / z 3
m

FIGURE 1.~-Graph of equation (28), In part gchematic

is always a positive quantity, being proportional to

the square of the thickness of the boundary layer.
The solution given by Pohlhausen for the case m=

—1, k negative, is wrong. As shown by figure 1,
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there is no solution given for this case by Pohlhausen’s
method. The solution given in reference 1 was appar-

ently obtained by setting d—%—zﬁ= —x’g—z+2)\:c, which
is obviously wrong.

For the flow U=Fkx™, no difficulty is encountered be-
cause of the vanishing of Q(z,2) in equation (21). \is
constant for a given value of m and when m is such
that the corresponding A(=mN) is equal to a root of

Q(zx,2)=0, \ is also a root of P(z,2)=0. Hence &

is indeterminate, but not infinite. However, when A
is greater than 12 (one of the roots of Q(z,2)=0) the
speed within the boundary layer rises to & maximum
exceeding U and then falls to U. Although such solu-
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to the assumptions on which the approximate equations
were deduced.

This leaves for consideration the branch labeled A4,
divided in three sections A,, A;, and A;. 4; and A4,
represent flows without separation, A being between
+12 and —12. The branch A; represents a flow with
geparation. -For negative values of m and positive %,
representing a flow with velocity decreasing as z in-
creases, if m does not exceed in absolute value 0.10,
there are 2 solutions, 1 without separation and 1 with
separation. For larger negative values of m, there is
either no solution at all or only a solution with separa-
tion. This result may be compared with that of Falk-
ner and Skan where a flow without separation was
possible if m was negative but not for absolute values

X O w0 - o —0— —
1.0 ,x//;r?g %‘:—& :f;;_zmoﬂ" ':’(-;:::&__‘.,W
KA A ] Ag==

T

08

5

' ' o7
;i,i ,{ / ,"///

0.6 7 ,,:,j
e ; Falkner and Skan
u / A7 O~-—-=Pohihausen
17 X7 x————Modifiad Pohlhausen
/ S / + Blosius
/'lp'
o.4—p v
N
S/ N2
72,7 /
v
2 gl
a. 7
4 £ / g
.
e
/r’/—
o / 2 2 & 7 &g g

4 5
yvVi/xv

FIGURE 2.—Veloclty distribution in boundary layer for the case U=kr=

tions seem to be possible even in the exact treatment
given by TFalkner and Skan, they do not, so far as
known, occur in any actual flow. The solutions repre-
sented by the branches marked B in figure 1 (N, and
X2 in table I) are therefore probably not of interest.
Likewise when X is negative and much greater in abso-
lute value than the other root, —17.76, large negative
values of % occur within the boundary layer. The
solutions represented by the branches marked C in
figure 1 (N; and X; in table I) are probably not found in
any actual flow. It mustberemembered that although
such solutions of the boundary-layer equations may
exist, the boundary-layer equations are themselves
approximations. The solutions represented by
branches B and C are of the type which do not conform

501—35——20

greater than 0.09. The branch A4,, represents a flow
with a velocity increasing as  increases.

The speed distributions for positive values of & and
values of m equal to 2.0, 1.0, 0.5, 0, and —0.09 were
given by Falkner and Skan. They are reproduced in
figure 2, together with the results computed from table
I (root N;) and those obtained by the method given
later.

The case m=0 is that treated by Blasius, whose
results are also shown.

The agreement is very close except for m= —0.09.
For this case the method of Falkner and Skan is prob-
ably open to criticism. The series used to represent

the solution is not econvergent for values of ¥ Emuch



440
greater than 6, at which value 4/U equals 0.95. At
y\/g=5, 4/U is 0.83 and it appears impossible to tell

whether u/U approaches 1 as y increases, since the
series is not convergent. Since the approach of /U
to 1 is the criterion for determining the constant which
determines the coefficients in the series, it cannot be
demonstrated that the solution given is correct. How-
ever, this difference may be taken as a warning that
Pohlhausen’s method may not be satisfactory for
negative values of U’.8

400 —T
A=-73
A=—00 ’] 1/\'/02
300 —
[ |4
)G \
200 A=—175 )
< A=~/7.18 \
\ B
100 Az N
\ A=858
]
L —
N 0 —
A=5./ A,
i A=~/ 75 ]
) — =
-100 A=88 N ]
AN
Nakwas /| c
-200 1 T
Two roots
imoginary)
-
| | fa~zs
-300 B Bronch
I of]
N=-840
| - I
400 A=op| |A=102
-5 2 =/ 0 / 2 3
m

FI1GURE 3.—Graph of equation (29), in part schamatic
MODIFIED METHOD

The solution by equation (25) proceeds along the
same lines as by Pohlhausen’s approximation. Equa-
tion (28) is replaced by

N3(0.6m3+0.2m%) 4+ N*(49.02194m*— 5.87794m)
+ N(—9526.01m —1500.63) +47241.52=0 (29)

The roots are shown graphically in figure 3; the data
from which the graph is plotted are given in table IT.
¢ Some recent experimental work completed at the National Buresu of Standards

indicates that Pohlhausen’s approximation is indeed very poor for negative values
of U’, separation occurring at values of A of the order of —5. .
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Tasie II.—ROOTS OF EQUATION (29)

m N Ny N M M N
2.0 2,352 44,797 —80. 4,704 89,59 —100. 13
L5 8. 056 60. 009 ~104. 067 4,584 90.01 ~156.10
L0 4. 385 00.76 ~1460. 06 4,366 80.76 —149. 00
1%.] 7.638 185.12 —267.20 3.819 92, 56 —133.06
0 3L481 | Infinite Infini 0 102. 65 —73,16
—0.09 84,955 377.51 | —1,245.6 ~7,646 112,10 —33.68
—0.10 117.51 251.63 | —1,130.4 —11.751 113, 94 —25.10
—& i(cﬁﬁ 169.8 160.8 —l,égé.g —17.503 114. 69 -igig
- Imag. Tmag. | ~839. Imag. | Imag.
—-0.20 Imag. Imag. ~852.9 Imag, Imaé 170, 68
—{Q. 30 —43.56 | —177.42 |—35,086.0 13, 085 53, lmﬂ
—0.33 —33.03 | —193.09 Infini 11,010 64,30 to
-0 50 —15.651 | —155.086 778.5 7.828 77,654 ~380.3
—100 —6.168 | —84.25 221.7 6,168 84.25 —237.7

The branches A;, A4;, As;, B, and C correspond to
similar branches in Pohlhausen’s solution. The new
feature is the occurrence of branches A, and B;. B,
18 of the B type discussed previously. A4, gives a solu-
tion without separation for negative values of m greater
in absolute value than 0.276, if k is negative; i.e., if the
flow is one in which the speed increases as z increases.
For m=—1, the boundary-layer equation may be

1.0 . e
Approxm}afe...‘_ L2 :///"'
o
/7 L Exoct
0.8 /r
—=0.6
U (1
)%
I"
0.4 ’,g
/
0.2 /*Z
0 0.4 08 12 1.6 2.0 2.4
yyU/xv

FIGURE 4.—Velocity distribution in boundery layer for the case U==—~£k/z

exactly integrated (veference 1) with the resultant dis~
tribution:

—u —
77 =2-3 tanh? (1.146+y1/2—£>

It should be noted that since % is negative, U is nega~ -
tive, and hence — U is positive. Whereas equation
(28) gave no solution, equation (29) gives

Us [
N= TZ—= —6.158, )\=6.158, §=2.481 _—L'f

The corresponding velocity distribution from (24) is
compared with the exact distribution in figure 4.
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The results for m equal to 2.0, 1.0, 0.5, 0, and —0.09
are shown in figure 2 for comparison with the results by
Pohlhausen’s solution (equation 28) and the results of
Falkner and Skan. It is seen that Pohlhausen’s solu-
tion is in general a better approximation than the
modified solution.

In figure 1 and figure 3 the values of A change con-
tinuously along the several branches of the curves.
The way in which the branches join at infinity is indi-
cated by the variation of A. A study of these two figures
leads one to believe that equations such as (20) and
(25) of the third degree in X cannot represent the solu-
tion over the entire range, and since the degree in A
can be traced to the fact that (19) and (24) are linear
in ), it is probable that the distribution curves either
are not linear in N or that other quantities such as
UU’" U’ also affect the shape of the distribution curve.
Nevertheless, the approximations are valuable where
they do give a solution.

APPLICATION TO TRANSVERSE FLOW ABOUT A
CYLINDER
The flow in the boundary layer of a cylinder has been
computed by J. J. Green (reference 7) by a step-by-step
method in which it was assumed that the circumferen-
tial velocity is expressible as a power series whose
coefficients are functions of the distance along the sur-
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speed U,, = the ratio of the distance measured along
the surface from the front stagnation point as origin

.to D, y the ratio of the distance measured normal to

the surface to D and & the ratio of the thickness of
the boundary layer to D. It may be shown that the
only change required in (25) is in the definition of 2
which becomes z=Rs® where R is the Reynolds
Number U,D/v; in other words » is replaced by 1/R.

The values of U, U’, and U’/ were taken from data
given in Green’s paper, table ITI, columns 4, 5, and
8. The relations between U, U’, and U’/ and Green’s
Ji, fi’, and gR are as follows:

U=g
L
U Rza
UUII - __szfl, _ 1
U’ 12

The solution of equation (25) was carried out by
the isocline method. The first step in this method is

the computation of values of &—d; for several values of

z and z. The values of z, U, U’, and y%,—' are given

in table III, together with the values of —g—z for several

values of z obtained by substitution in equation (25).

TasLe III.—DATA FOR SOLUTION OF EQUATION (25) FOR CYLINDER

dz -~
o aforz- < .
[} z U U i
0 0.75 L50 2,25 3.00 3.75
4

0ol 0 0 3.892 —0. 2635 +o i —® —® —o —
5 | 0.0438 0.149 3.630 +. 0445 212.0 76.5 —40.4 —168.0 —286.0
10 L0872 .807 3.816 - 102.7 340 —29. —90.4 —150.0 —209.0
15 1308 485 3.643 - 65.0 23.4 —15.80 —62.0
20 1744 - 633 3. 536 —. 2745 49.9 18.81 —9.90 —37.3 —64.0 —~90. 6
25 . 2180 . 789 3.243 —. 4235 39.9 17.07 —4.31 —24.5 —44.2
30 . 2816 -928 3.018 —. 4815 33.9 15.83 —L13 —-17.29 —33.0 —48.4
35 3052 1. 058 2. 845 —. 4488 29.8 1479 0.68 —12.81 —25.88
40 . 3488 1.176 2 699 —. 6387 26.79 13.97 L89 —9.63 —20.79 —3L8
45 . 3924 L283 2 502 —L 4204 24, 54 13. 64 3.36 —B.47 —16.96
50 . 4380 1.384 2113 —3.0477 22.76 14.21 6.14 —L58 —0.03 —16.34
&5 L4708 1.463 L543 —8.1623 21, 51 15. 59 9. 98 4.58 —.62 —5.67
80 L5232 1.523 . 957 —10. 468 20.69 17.15 18.77 10. 55 7.4 4. 44
66 . 5668 1.549 452 —9L 04 20.33 18.69 17.19 16.78 14.48 13.28
67 . 5838 1.854 161 —923.0 20.27 19.73 19.34 10.08 18.93 18,63
69 . 6018 1654 - —8,748.0 20.27 25.91 28.73 27.81 29.10 0.77

face. The approximate solution by equations (24) and
(35) was computed for comparison with Green’s more

nearly exact solution.
(44

While the quantities U&—di; A a.ndU—UU,;— in equa-
tion (25) are nondimensional, z and z are not. As
noted by Green, it is convenient to measure all dis-
tances in terms of some reference distance, in -this
case the diameter D of the cylinder, and all speeds in
terms of some reference speed, in this case the speed
U, at a great distance from the cylinder. For sim-
plicity, no new symbols will be introduced, but U is
taken to mean the ratio of the speed in the potential
flow outside the boundary layer -to the reference

- desirable.

In addition to &, which is the distance along the sur-
face from the front stagnation point, the azimuthal
angle 0 ig given.,

An isocline diagram is prepared from the data in
table ITI, that is, a chart with z as ordinate, and z as
abscissa with curves showing the loci of constant values

of % - In practice it is convenient to change the scale

of z relative to z to give values of‘%less than 10.

In the present case the use of z/10 and%is found

A portion of the isocline diagram is shown
in figure 5. The numbers on the curves are the values



of é%%) - The curves are located by interpolation be-

tween the valtes given in table ITI. Thus at z=0.4796.

the isocline dz/ 10

=1,
dz/10

dz= 10) lies at a value of z of

1.49; the isocline- =1.5 lies at 2=0.829, etc.

The solution curves of equation (25) must cross the
isoclines with the slope indicated on the isocline, that
ig, the zero isocline must be crossed horizontally, the
isocline labeled 1 at a slope of 45°, etc., as indicated by
the short lines in figure 5 crossing the isoclines. The
particular solution curve in which we are interested is
the one which satisfies the boundary conditions at
2=0, the front stagnation point. Because U=0 at
2=0, we find here a singularity; there is no true bound-
ary layer right at the stagnation point. The isocline

chart shows a singular point at Whichg—zzis indetermi-

nate. No matter what value of z is assumed at 2=0,

0.
4 i
w130
[295
. IR 4
i0 %4 / ) 2.5
AR5
S i !
0| el e S
o ol oz 0.3 0.4 0.5 o

x .
F1GURE 5.—Isocling diagram for boundary layer of a cylinder

the attempt to construct the solution curve leads imme-
diately to the singular point.

It may be shown that the zero isocline leaves the
singular point at zero slope and that the desired solu-
tion is constructed by starting a solution curve in this
manner. The curve is shown in figure 5. In the actual
computation, a greater number of isoclines were drawn
to a larger scale. From this gurve, the values of
2=[5 % were obtained as a function of z (table IV).

TasLe IV.—VALUES OF Rs? FOR CYLINDER

z R32 z R3?
] 1125 0.3488 1. 500
0. 0436 1,125 .3934 1. 590

0872 1140 . 4360 L731

1308 1185 . 4708 1. 985

1744 L2233 .5232 2,340
. 2180 1.300 . 5668 2.880
.2816 L3 ||. 5838 3.185

L4333 . 6015 3. 600

The velocity distribution was then determined from
(24). The curves for £=0.1308 and z=0.5668 only
are shown in figure 6. The results of experiments by

REPORT NATIONAL ADVISORY COMMITTEE FOR AHERONAUTICS

Green and the results of Green’s computation are also
shown. At other values of z, the differences are of a
similar nature. In Green’s computation, the speed in
the potential flow was taken from the experimentally
measured values, although the pressure distribution
was also used in the remainder of the computation. We
have used only the results of the pressure distribution.

REMARKS ON THE ACCURACY OF THE APPROXIMATE
METHODS

The preceding comparisons show that in theso
particular cases approximate methods give a fairly
good representation of the actual distribution, the
differences not exceeding 0.05 U for the modified
solution, or 0.02 U for Pohlhausen’s solution, where it is
applicable. Unfortunately, all of the satisfactory
exact solutions are cases in which M\ is positive and
less than 10 and UU*’/U" *is small. No satisfactory
comparisons are known in which X is negative.

,J
x = 0/308/7—0:2;?

/
7 {'./
0.8 / ,/ :
Z Y x = 0.5668

]
1.0 T

Green's theorefrcal

! f’ (from small scale plot)
024 o— — Green's experimental
/ rmmmemmm Modified Pohlhausen solution
o o4 0.8 le L6 20 2.4
yVR
F1GURE 6.~~Velocity distribution in boundary layer of cylinder at two distances
from the front stagnation point

It is possible to approach the question in o different
way. The approximate solution may be used to com-
pute all quantities entering in the differential equation
(1) and a check made as to the accuracy with which
the equation is satisfied. There will be found a
residual error which is most conveniently expressed as

a ratio to the last term lbp (=- UU’ by equation 4).

This error will be a functlon of ¥, nearly zero on the
average, exactly zero at y=0 and y=4 and at some
intermediate point. Figure 7 shows the maximum
positive and negative residuals for values of A from
77
—20 to +20 for 'UT[/]::‘='0: +44, and —45 for the
modified solution (equations 24 and 25).
17
The maximum errors for A between 0 and 8, %,U-g— =),

the region in which comparisons with exact solu-
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tions are available, are of the order of 0.3 to 0.4
times UU’. (Note that A=0 corresponds to U’=0,
hence error /UU’ approaches infinity at A=0). The
errors for negative A are slightly greater than for
positive . As UU’"’/U’ ? increases, the errors become
larger, especially for positive values of A.

I
2 —— =5 >
/A p
v 7,
/ e z
O | / //
E > =TT ;; I/ '/l
Qk,s » N %74_._—————
NERS p
:g L. Pt B 1 N R
0 =R = S
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\‘
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-24 -/6 -8 [7] 8 16 24
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FIGURE 7.—Errors in the modified solution (equations (24) and (25)) at varfous
values of A and UT”/U"*
CONCLUSION

Approximate methods of the type suggested by
Pohlhausen for calculating the flow in a laminar
boundary layer are useful in giving one a fair picture
of the flow when the parameters A and UU"//U’ * are
not too large. The solution given by Pohlhausen fails
when U’ is positive and large, such that A=12. An
extension of the range of application of the solution has
been accomplished by a modification of Pohlhausen’s

443

method with a decrease in the accuracy of the approxi-
mation. Comparisons have been made of the approxi-
mate solutions with exact solutions for the cases in
which exact solutions have been published. The
approximate solutions of the type studied appear to
be very poor when A is negative.
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